
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 313 (2008) 367–374

www.elsevier.com/locate/jsvi
Rapid Communication

Existence of super-harmonics in quarter-vehicle system
responses with nonlinear inertia hydraulic track mount

given sinusoidal force excitation

Jun Hwa Lee, Rajendra Singh�

Acoustics and Dynamics Laboratory, Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, USA

Received 11 November 2007; accepted 15 February 2008

Handling Editor: S. Bolton
Abstract

Hydraulic engine mounts (and other elastomeric devices) are usually experimentally characterized based on the

assumption that mount response to harmonic displacement input is purely sinusoidal, although they contain strong super-

harmonics. Time domain responses of a quarter-vehicle system with a nonlinear inertia track-type mount are examined in

this communication, with emphasis on the super-harmonics. Finally, internal (mount) path forces are evaluated in order to

clarify their contribution to the system responses and the effect of nonlinearities.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Mounts are typically characterized by a non-resonant elastomer test in terms of the dynamic transfer
stiffness K(o,X) ¼ FT/X at a given angular excitation frequency o (rad/s) and amplitude X of sinusoidal
displacement excitation, under a specific static load fs (or displacement); here FT is the amplitude of the force
transmitted to a blocked base only at primary o though super-harmonics might be present [1–5]. Nevertheless,
the hydraulic engine mount is truly a nonlinear isolator and as such the upper chamber pressure and
transmitted force time histories, when excited by a purely sinusoidal displacement input, are often periodic
with super-harmonic (and sub-harmonic) contents [1–5]. Although the nonlinear phenomena of device (alone)
have been experimentally and analytically studied [1–14], their effects on the vehicle system response are still
poorly understood to the best of our knowledge. For instance, several investigators, including Kim and Singh
[2], and Royston and Singh [3], have developed nonlinear time domain models of the mount but the thrust of
prior work has been the fundamental harmonic and comparison with measured K(o,X) in frequency domain.
To demonstrate the existence of super-harmonics, we have initiated an improved nonlinear analysis and in
particular this communication presents a first report on the effect of inertia track-type mount on the dynamic
behavior of a quarter vehicle (as shown in Fig. 1). We will employ the measured time domain data (from our
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. Quarter-vehicle system with nonlinear hydraulic (inertia track-type) engine mount.

J.H. Lee, R. Singh / Journal of Sound and Vibration 313 (2008) 367–374368
laboratory [4–5]) on mount alone and then we predict the response of the system (of Fig. 1) in time domain
including the super-harmonics. Two dominant nonlinearities of this mount are: (i) dual-staged compliance of
the upper chamber that includes the vacuum formation during the expansion process [1–6] and (ii) nonlinear
fluid resistance of the inertia track [1–5]. We will also compare the relative contributions of detailed force
paths such as rubber and fluid paths in the mount, as a function of o, to clarify their roles from the system
viewpoint.

2. Nonlinearities of inertia track-type mount

2.1. Super-harmonic contents in measured signals for mount alone

Fig. 2 shows the measured harmonic responses of a hydraulic engine mount with inertia track only
(as shown in Fig. 1) when excited by the conventional sinusoidal displacement input. Observe the flattened
region in the upper chamber pressure pu(t) in Fig. 2(a); this shape suggests that the vacuum conditions exist in
the upper chamber [1–6]. However, the shapes of pu(t) in Figs. 2(a) and (b) are qualitatively different, though
both represent the harmonic responses of the same mount. The vacuum phenomenon is less prominent in
Fig. 2(b), due to lower negative pu(t). Table 1 shows the measured super-harmonics where the ratios (in %) of
nth Fourier coefficient (Fn) to the fundamental harmonic (n ¼ 1) are listed. The second harmonic is
significantly higher when pu(t) has a flattened shape; otherwise the third harmonic is dominant.

2.2. Physics of the nonlinear phenomena

The nonlinear fluid model of the mount (Fig. 1) is briefly examined to clarify the source(s) of super-
harmonic contents. In order to focus on the inertia track mount only, assume that the masses me and mw of
Fig. 1 are zero and infinity, respectively; and, the stiffness kw and damping coefficient cw are zero. In addition,
designate the displacement xe and force fe as x and f (for the sake of convenience) when the mount alone is
considered. For the fluid model of Fig. 1, the rubber path is given by stiffness kr and damping cr coefficients;
Cu(pu) and Cl are the fluid compliances of the upper (#u) and lower (#‘) chambers; qi(t) is the volumetric flow
rate through the inertia track (#i); Ii is the inertia of fluid column in the track; and Ri(qi) is the fluid resistance
of the track. The dynamic component of driving point force f(t) is expressed as follows where x(t) is the
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Fig. 2. Time domain responses of the hydraulic (inertia track) mount when excited by harmonic displacement: (a) displacement

x at 14.5Hz with X ¼ 1mm, transmitted force fT and upper chamber pressure pu, (b) x (at 6.5Hz with X ¼ 1.5mm), fT and pu.

Key: ___, measured; _ _ _ _, predicted.

Table 1

Measured and predicted super-harmonics in steady-state time domain responses of the mount (alone)

Fourier coefficient (Fn) ratio (%) |F2|/|F1| |F3|/|F1| |F4|/|F1| |F5|/|F1|

Harmonic excitation at 14.5Hz with X ¼ 1mm (measured)

fT 28.7 5.70 0.46 0.87

pu 41.6 7.80 0.72 1.29

Harmonic excitation at 14.5Hz with X ¼ 1mm (predicted)

fT 27.1 3.02 3.49 0.57

pu 40.2 4.47 5.17 0.84

Harmonic excitation at 6.5Hz with X ¼ 1.5mm (measured)

fT 1.87 5.14 0.43 0.81

pu 2.22 13.5 1.01 0.91

Harmonic excitation at 6.5Hz with X ¼ 1.5mm (predicted)

fT 0.01 7.40 0.02 0.48

pu 0.06 33.3 0.09 2.14
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dynamic displacement; Ap is the effective rubber (piston) area; pu(t) and p‘(t) are the dynamic pressures of the
upper and lower chambers:

f ðtÞ ¼ cr _xðtÞ þ krxðtÞ � AppuðtÞ. (1)

Nonlinear and linear continuity equations for the upper and lower chambers are written as follows:

qiðtÞ � CuðpuÞ _puðtÞ ¼ Ap _xðtÞ; qiðtÞ þ C‘ _p‘ðtÞ ¼ 0. (2,3)

Nonlinear momentum equation for the inertia track is

I i _qiðtÞ þ RiðqiÞqiðtÞ þ puðtÞ � p‘ðtÞ ¼ 0. (4)
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The dynamic component of the force fT(t) transmitted to the rigid base (when mw is N) is related to f(t) as
follows:

f T ðtÞ ¼ cr _xðtÞ þ krxðtÞ � AppuðtÞ ¼ f ðtÞ. (5)

Parameters and empirical functions [4,5] of the example case (inertia track mount) are as follows:
Nonlinear Cu(pu) is 2.5� 10�11m5N�1 when puX0 but 2.5� 10�11–7� 10�45pu

7m5N�1 when puo0 (where pu

is in Pa); C‘ is 2.4� 10�9m5N�1; Ap is 3.31� 10�3m2; Ii is 2.8� 106 kgm�4; nonlinear Ri(qi) is 3.45�
1011|qi| N sm�5 (where qi is in m3 s�1); kr and cr are 3.2� 105Nm�1 and 5.0� 102N sm�1. With the above-
mentioned nonlinear parameters, Cu(pu) and Ri(qi), the governing equations (1)–(5) are simulated. Predicted
time histories (dotted lines) in Fig. 2 illustrate that Eqs. (1)–(5) faithfully represent the measured nonlinear
phenomena. Table 1 confirms that the nonlinear fluid model reproduces the largest super-harmonic content in
two cases. When pu experiences severe vacuum condition, second harmonic is strong; this suggests that the
nonlinearity associated with Cu(pu) is more dominant. Note that the Ri(qi) nonlinearity by itself can produce
only odd super-harmonics and thus strong third harmonic is found when vacuum condition is insignificant.
Accordingly, Ri(qi) is a more dominant nonlinearity in this case.

3. Responses of the quarter-vehicle system with nonlinear mount

3.1. Frequency domain responses

Consider a simplified engine-mount–wheel-tire system as shown in Fig. 1. For the sake of illustration,
assume that the engine mass me is 120 kg and the wheel-axle mass mw is 40 kg; the tire stiffness kw and damping
coefficient cw are 2� 105Nm�1 and 500N sm�1. The governing equations consist of the following expressions
along with Eqs. (3) and (4) where xe and xw are the displacements of the engine and wheel axle; and fe and fw

are the external forces applied to masses me and mw, respectively:

me €xe þ crð _xe � _xwÞ þ krðxe � xwÞ � Appu ¼ f e, (6)

mw €xw þ cw _xw þ kwxw þ crð _xw � _xeÞ þ krðxw � xeÞ þ Appu ¼ f w, (7)

qi � CuðpuÞ _pu ¼ Apð _xe � _xwÞ. (8)
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Fig. 3. Effect of the force excitation level on frequency domain responses of the system with nonlinear mount: (a) normalized frequency

response xwp�p/fwp�p of the nonlinear system. Key: ___, fwp�p ¼ 130N; _ _ _ _, fwp�p ¼ 97.5N; _ . _, fwp�p ¼ 65N; in all cases fep�p ¼ 0N.

(b) Corresponding frequency response functions Xw/Fw of three equivalent linear systems. Key: ____, linearized at first resonant frequency;

_ _ _ _, linearized at second resonant frequency; _ . _, linearized at third resonant frequency.
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Note that Eqs. (4) and (8) are nonlinear differential equations. Fig. 3(a) shows the normalized frequency
responses in terms of xwp�p/fwp�p of the quarter-vehicle system under harmonic force excitation fw ¼ Fw sinot

(but fe ¼ 0). The system is apparently a two-degree-of-freedom system but an additional degree of freedom is
brought in by the mount’s inertia track dynamics. Observe that the nonlinear frequency responses are
excitation amplitude-sensitive while each curve looks like a frequency response function of a linear time-
invariant (LTI) three-degree-of-freedom system. The resonant frequencies are nearly identical, which means
that only damping (at the resonances) is affected by the excitation amplitude. Fig. 3(b) illustrates the
frequency response functions of the equivalent LTI systems at three resonant frequencies. Parameters of the
equivalent Kelvin–Voigt model (stiffness ke and damping coefficient ce) for the inertia track mount are
determined from the complex stiffness F1(fH)/F1(xe�xw) by exciting the system at each resonant frequency.
Here fH is the internal (total) force generated by the inertia track mount: f H ¼ crð _xe � _xwÞþ

krðxe � xwÞ � Appu. The behavior of the equivalent linear system with light damping is similar to that of
the nonlinear system near the associated resonant frequency. Accordingly, the linearization technique works
for two lightly damped (first and third) modes but not for the heavily damped second mode.

3.2. Super-harmonics in time domain responses under resonant excitations

Fig. 4 shows the steady-state time domain responses of the system given harmonic force excitation
with fwp�p ¼ 130N (and fep�p ¼ 0N) at the resonant frequencies. Table 2 shows the super-harmonic contents.
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Fig. 4. Steady-state time domain responses of the system when excited by the harmonic force fwp�p ¼ 130N (and fep�p ¼ 0N):

(a) displacements xe and xw, jerk jw, and acceleration aw when excited at the first resonance, (b) xe, xw, jw, and aw when excited at the second

resonance, (c) xe, xw, jw, and aw when excited at the third resonance. Key: ____, xe, jw; _ _ _ _, xw, aw.
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Table 2

Super-harmonics in steady-state time domain responses of the system when excited by harmonic force fwp�p ¼ 130N (and fep�p ¼ 0N) at

three resonances

Fourier coefficient

(Fn) ratio (%)

|F2|/|F1| |F3|/|F1| |F4|/|F1| |F5|/|F1| Effect of

harmonic order n

Harmonic excitation at first resonant frequency (4.7Hz)

fH 0.00 0.54 0.00 0.25

pu 0.00 12.3 0.00 1.25

xw 0.00 0.71 0.00 0.06 1/n2

vw 0.00 2.14 0.00 0.30 1/n

aw 0.00 6.42 0.00 1.51 1

jw 0.00 19.3 0.00 7.54 n

Harmonic excitation at second resonant frequency (11.9Hz)

fH 0.07 8.54 0.05 0.17

pu 0.02 3.46 0.02 0.08

xw 0.02 0.72 0.00 0.00 1/n2

vw 0.03 2.17 0.01 0.02 1/n

aw 0.06 6.50 0.03 0.12 1

jw 0.13 19.5 0.14 0.62 n

Harmonic excitation at third resonant frequency (30.9Hz)

fH 1.27 0.75 0.42 0.19

pu 1.74 1.07 0.61 0.28

xw 0.28 0.08 0.03 0.01 1/n2

vw 0.57 0.22 0.09 0.03 1/n

aw 1.13 0.65 0.37 0.17 1

jw 2.26 1.96 1.47 0.84 n
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The third harmonic is dominant when the system is excited at the first (4.7Hz) and second (11.9Hz) resonant
frequencies. The upper chamber does not undergo severe vacuum and hence Ri(qi) governs the nonlinear
dynamics of the underlying system at these two modes. However, the second harmonic is the largest when
excited at the third resonant frequency (30.9Hz). This suggests that the primary nonlinear source now is the
vacuum phenomenon. But its contribution is not significant as the flattened region in pu is not prominent due
to smaller relative displacement response. Note that xe and xw look like pure sinusoids, although the
net constraint forces fe�fH and f w þ f H � kwxw � cw _xw contain super-harmonics. The nth harmonic in the
mount force affects the displacement xw, velocity vwð¼ _xwÞ, acceleration awð¼ €xwÞ, and jerk jwð¼

_ _ _xwÞ with the
ratios of 1/n2, 1/n, 1, and n respectively, as shown in Table 2, where n is the harmonic order. Accordingly,
super-harmonics (due to mount nonlinearities) should be more evident in system acceleration or jerk
signatures.

Fig. 4 also shows the mode shapes of the system from the time domain responses. At the first resonance
(wheel hop mode), xe and xw are nearly in-phase with each other: F1(xe) ¼ 4.1+�171.71 and
F1(xw) ¼ 2.7+�168.51. At the second resonance (engine bounce mode), phase of xe is nearly 901 with
respect to xw: F1(xe) ¼ 7.9� 10�2+80.01 and F1(xw) ¼ 3.5� 10�1+�176.61. Observe that the engine
bounce mode is heavily damped due to significant damping introduced by the inertia track. At the third
resonance (inertia track mode), me and mw move nearly 1801 out-of-phase with each other:
F1(xe) ¼ 6.3� 10�2+4.21 and F1(xw) ¼ 2.2� 10�1+175.61. The first and third mode shapes with light
damping can also be obtained by employing the equivalent Kelvin–Voigt model and by solving the
conventional eigenvalue problem. For instance, the eigenvectors {ue uw}

T are obtained by using the three
equivalent linear systems (Fig. 3(b)) as follows: {11.1+�45.11 7.1+�44.51}T, {2.4+1.01 12.8+133.11}T,
and {2.1+132.71 7.2+�44.41}T. At the first and third modes, we obtain nearly identical eigenvectors but
not at the second mode.
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4. Contribution of rubber and fluid paths (within the mount) from the system perspective

Consider the fluid model of mount as shown in Fig. 1 again. The total (internal) force fH consists of the
force through the rubber path f rð¼ crð _xe � _xwÞ þ krðxe � xwÞÞ and the force through the fluid path
ff (¼ �Appu). Fig. 5(a) shows the internal force spectra. The rubber path force interferes with the fluid path
force in a destructive manner when the excitation frequency is less than the frequency at which the ratio ffp�p/
frp�p peaks. But they interfere in a constructive fashion beyond this peak frequency. The contribution
of the fluid path is most significant near the minimum of the rubber path force. Since crð _xe � _xwÞ is negligible,
f r � krðxe � xwÞ. Accordingly, the fluid path dominates near the anti-resonance of the relative displace-
ment xe�xw when excited by the harmonic force. The fluid path force ff can be rewritten using Eqs. (3)
and (4) as

f f ¼ Ap I i _qi þ RiðqiÞqi þ
1

C‘

Z
qi dt

� �
. (9)

Now it is decomposed into the track inertia force f fI ð¼ ApIi _qiÞ, the track resistance force ffR( ¼ ApRi(qi)qi),
and the lower chamber compliance force ffC( ¼ Ap

R
qi dt/C‘). Fig. 5(b) shows their spectra. Overall, ffI

is the dominant component and it is larger than ffR even at the first and second resonances of the
system. Although the quadratic nonlinearity of Ri(qi) is the primary source of the third harmonic, the most
significant component is still ffI. This suggests that the nonlinear Ri(qi) affects the system behavior in an
indirect manner.

5. Conclusion

The nonlinear upper chamber compliance and fluid resistance of the hydraulic (inertia track) mount were
evaluated from the vehicle system perspective. Although the vacuum phenomenon is very prominent in mount
(alone) tests, its effect on the system responses is insignificant due to small relative displacement response.
System acceleration and jerk responses show strong super-harmonics that are introduced by the mount. While
the fluid resistance is one of the main nonlinear sources, the fluid inertial force (linear term) affects the total
(fluid) path force more. Further work on the free decoupler-type mount is in progress and will be reported
soon.
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